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RESEARCH MEMORANDUM

TRANSONIC WIND-TUNNEL MEASUREMENTS OF STATIC

LATERAL AND DIRECTIONAL STABILITY AND VERTICAL-TAIL IOADS

FOR A MODEL WITH A 45° SWEPTBACK WING

e e

By Joseph M. Hallissy, Jr.

SUMMARY

An investigation to determine the vertical-tail loads and airplane
characteristics in sideslip for a model of a swept-wing fighter-type
airplane was conducted in the Langley 16-foot transonic tunnel at Mach
numbers from 0.80 to 1.03 and at angles of attack to 15°., The wing had
450 sweepback, an aspect ratio of 3.56, a taper ratio of 0.30, and
utilized NACA 64AOO7 airfoil sectioms.

The directional stability at a Mach number of 0.80 was approximately
constant through the test angle-of-attack range. At higher speeds,
although having a greater initial value than at a Mach number of 0.80,
the directional stability decreased with angle of attack, as did the
vertical-tail loads. At subsonic speeds the directional stability for
zero angle of attack was found to be somewhat less at very small angles
of sideslip than at moderate angles. The load on the exposed vertical
tail represented between 60 and 80 percent of the total tail contribution
to side force, and the maximum travel of the center of pressure with angle
of attack and Mach number was about 7 percent of the height upward and
14 percent of the chord rearward.

INTRODUCTION

Many of the trends in the design of present-day fighter aircraft
have increased the problems of providing adequate lateral and directional
stability and of properly estimating tail loads. This is particularly
so since the usual operating range of such aircraft now includes subsonic,
transonic, and supersonic flight and an extended angle-of-attack range.
Reference 1 discusses in detail some of these stability problems, while
reference 2 considers the problem of tail-loads estimation. Both of these
references point to the necessity, in the present state of design ability,
of adequate wind-tunnel studies in the development of specific designs.
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2 CONFIDENTIAL NACA RM L55L19

Therefore, when a supersonic-fighter design was investigated in the
Langley 16-foot tunnel recently, the test program included studies of
lateral and directional stability and of vertical-tail loads. This
paper presents the results of this part of the investigation. Previously
reported are the longitudinal stability and performance data obtained in
the same program (references 3, 4, and 5). Data are presented in this
report for Mach numbers from 0.80 to 1.03, angles of attack from 0° to
150, and sideslip angles generally to 5°.

SYMBOLS

The center-of-gravity location is shown in figure 1. All coefficients,
including the tail-load coefficlents, are referred to this center-of-gravity
location through the stability axes system.

b wing span

by, vertical-tall height from defined root chord, figure 2

& wing mean aerodynamic chord

Ct local vertical-tail chord

Cy rolling-moment coefficient, ROlI;Sb moment

Czt rolling-moment coefficient due to load on the exposed vertical
‘1 tail Tail rOlli!E moment
i ? qSb

Cm pitching-moment coefficient, Litch o Emment

Cn yawing-moment coefficient, JXaWinZ moment

qSb

Cnt yawing-moment coefficient due to load on the exposed vertical

Tall yaw moment
gSb

Cy side-force coefficient, §l§§E§2££§

tail,
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NACA RM 155L19 CONFIDENTIAL 3

Cy, side-force coefficient due to load on the exposed vertical
tail, *ald side force

qs
M free-stream Mach number
q free-stream dynamic pressure
S total wing area
a angle of attack measured from the wing chord plane, deg
B angle of sideslip, deg

Stability derivatives:

%1 p-50) = C1(p=00)
5

®n(p=5°) - %n(p=0°)
5

CzB = 57.3

CnB =5T7.3
Cy( a0y = CYpa_no
o, = 7.5 80) ~ M=

Clt(p-50) ~ M(p-00)
5

Ont(p50) = nt(g_00)
5

CztB = 37.3

Cop g = 57-3

O a0y = C¥t(gogo
Cryy = 573 @6)5 (B=0°)

APPARATUS AND TUNNEL

Tunnel and Model Support

These tests were conducted in the langley 16-foot transonic tunnel
which has a slotted throat of octagonal cross section.
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L CONFIDENTIAL NACA RM L55119

The model was supported with a sting which was mounted on s strut
passing through the tunnel floor. The strut moved on the arc of a circle
to provide angle-of-attack variation without moving the model center of
gravity from the tunnel center line. Data obtained at a fixed sideslip
angle of 5° were obtained by means of a bent coupling in the sting.
Variable sideslip data at zero angle of attack were obtained by rolling
the model 90° and operating the strut as for angle of attack.

Model

Figure 1 is a three-view sketch of the model. Vertical-tail geometry
and the principal dimensions of the wing and horizontal tail are given
in figure 2. A photograph of the complete model installed in the test
section of the tunnel is given as figure 3.

Force and moment measurements on the model were obtained using two
internal strein-gage balances. The main balance measured the six com-
ponents of the complete model, and a smaller three-component balance
located at the base of the vertical tail measured the side force and
bending and twisting moments on the exposed part of the vertical tail.
Figure 4 is a cross-sectional sketch through the lower part of the vertical
tail which shows the three-component-balance installation. No seals were
installed, and cross flow was, therefore, possible through the clearance
gaps and under the vertical tail ahead and behind the balance-gage beams.
An alternaste tail (having no balance or clearance gaps) was also available
and was used for some runs.

Some tests were made with the wing equipped with a longitudinal
stability "fix" consisting of 6° leading-edge droop from 0.25 to 0.T1
semispan and 15-percent chord-extensions drooped 6° from O.71 to 1.00
semispan. This fix is one of seversl investigated in the longitudinal
tests on this model, and is described in more detail in reference L.

TESTS

The test Reynolds number based on wing meen aerodynamic chord varied

between about 6.0 X 106 and T.2 X 106. For all tests the horizontal tail
was installed and set at zero incidence (parallel to the wing chord plane).
Test Mach numbers were 0.80, 0.90, 0.95, 1.00, and 1.03, although for the
last two of these, data were not obtained at the highest angles of attack
due to support-system limitations. The other variables and the configu-
rations tested are indicated in the following table:
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. Wing |Vertical tall | a, deg| B, deg Deta presented Figures
: Basic|Plain (sealed) o |-5t05 |[c; Cp Cy 5
: C1.5 Cp.y C 6
s 171’ Mg’ “Yp
‘ Crn 15(a)
Basic [Instrumented 0 |-5to 5 ||Cyy Cpy Cy 5
(unsealed) Crur C oy 6
2 4
$Pip? Tnp? TYp |
Cnm 1g(a)
Cry2 Cnyr Cyy
Basic [Off 0 |-5to 15|fcy, Cyy Oy 7
Cm 15(v)
Basic|Instrumented |0 to 15 0, 5 |{Cy.» Ch.s Cy 9, 10
(unsealed) B B B
. Yo 16
{c C 11, 12
ztB’ n'tB’ thB 3
Vertical-tail 13
| center of pressure|
Basic [Off 0to 15| 0, 5 C1g2 Cngs Cyg 9, 10
9
gﬂhn 16
Fixes (Instrumented [0 to 15| 0, 5 ([Cy., Coo» Cy 1k
on | (unsealed) ﬁ B B B "
Cye s Cps »
“1eg” g’ Oreg
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Data obtained in angle-of-attack tests at constant sideslip angles
of 0° and 5° have been reduced directly to the sideslip derivatives and
are presented in this form throughout the report.
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RESULTS AND DISCUSSION

Effect of the Unsealed Vertical-Tail Root on Airplane Coefficients

It was believed at the time of the tests that the small gap around
the base of the vertical tall could be left unsealed without adverse
effects, and therefore, as indicated in the table of tests, most of the
tests were made with no seal. The results, however, as shown in fig-
ures 5 and 6, indicate effects of appreciable magnitude. Figure 5 shows
that at a« = 0° the lack of a seal resulted in decreased (absolute)
values of all three lateral coefficlents, and thus in the three sideslip
derivatives. This was especially true for small angles of sideslip, the
curves for the instrumented (unsealed) tail being appreciably more flat-
tened as they pass through B = 0°.

The lateral derivatives as determined from the end points only
(+#5° and -5°) are shown in figure 6 for the two tail installations.
The loss caused by the unsealed root gap is as much as 20 percent for
CnB and 50 percent for ClB- For all three of these derivatives the

gap has little effect on the variations which occur with Mach number,

and it is believed that qualitatively the tail loads and tail-effectiveness
information obtained is sound, although some quantitative error has been
introduced by the lack of seals.

Directional and Lateral Stebility

Effect of sideslip at a = 0°.- In making the variable sideslip

tests, many points were taken near B = 0°, in anticipation of a possible
loss of stability for small angles of sideslip. Both Cn and Cy for
the tail-on case do show slope reductions near B = 0° for some Mach
numbers (fig. 5). The slope of Cp with B, for example, is reduced

15 to 20 percent (plain tail) for Mach numbers from 0.80 to 0.95, but
none at Mach number 1.00 or 1.05. Most of this reduction in slope is
chargeable to the tail itself, as is indicated by the vertical-tail-

load data of figure 8, and is probably due to being in the wake of the
fuselage and canopy. Some of the slope reduction for small sideslip
angles also comes from the wing-body combination as shown by the tail-off
data of figure 7. This, of course, stems from the tendency for both the
force and moment on bodies alone to be nonlinear with angle of inclination.
(As an example, see the body data of ref. 6.)

For Mach number 0.95 and higher, the tail-on data, particularly
Cn 1in figure 5(b) show a number of nonlinearities which are generally
similar for both the sealed and unsealed case and which are symmetric
about B = 0°, These nonlinearities evidently come from the load on
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the tail itself, since idrey~ are also found in the tail-load curves of
figure 8 and are not fadbnd in the tail-off data of figure 7. Considering
that they do not occur imor M = 0.80 and 0.90, these nonlinearities are
probably related to sudX local flow field conditions as horizontal-tail
shock waves.,

Sideslip derivatiwv = mt angle of attack.- In addition to the air-
plane tail-on and tail-ft¥f sideslip derivatives which are shown as
functions of angle of datac=k (fig. 9) and Mach number (fig. 10), the
total vertical-tail confitriution has been computed and is given in
figures 11 and 12. The = were obtained by subtracting the vertical
tail-off derivatives fm mtshe tail-on derivatives.

The side-force dermwative CYB for the vertical tail-off condition

generally increases in ieosolute value both with angle of attack (fig. 9)
and with Mach number (fj2. 10). For the tail-on condition, however,
CY’3 decreases with q,nAndicating reductions in tail contribution (as

shown in fig. 11) at hij m mngles of attack, particularly at the higher
Mach numbers. These characteristics of the tail contribution to Cy

are reflected in the ¢ @ata which show similar characteristics. The
directional stability u“ﬁmﬂ for the complete airplane is approximately

constant throughout thernmngle-of-attack range (0° to 15°) for a Mach
number of 0.8, figure 9 Mt higher speeds (Mach number 0.95 to 1.03),

although having a great r fnitial value than at M = 0.80, an decreased

with angle of attack (% & Aid not fall below the M = 0.8 level in the
range of these tests). HIhe tail contribution to Cnﬂ’ figure 11, shows

similar characteristics

The rolling momentiEhe to sideslip CIB, has a variation with angle

of attack, figure 9, whixh is typicel for swept-wing airplanes. It is
due to the lift-curve wiwiations and changes in stalling characteristics
vwhich occur with changet Im effective sweep angle in the sideslipping
condition. The effect( If Encreasing Mach number is to reduce the non-
linearities of these cwewes. Similar results for other swept-wing con-
figurations are shown imx reeference 7. The effect of adding the vertical
tail 1s to make the zens argle—-of-attack values of Clﬁ negative, but

at high angles of attadf this negative contribution is decreased or
becomes positive.
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Vertical-Tall loads

All of the vertical-tail loads and moments obtained in this inves-
tigation have heen reduced to coefficient form using airplane dimensions
and the stablllty-axes system so as to be directly compareble to the
other coefficients presented in the report. Variations of the tail loads
and moments with sideslip angle at zero angle of attack are given in
figure 8, while the variations of the tail derivatives with angle of
attack and Mach number obtained from data taken at 5° sideslip angle have
been included in figures 11 and 12 with the total vertical-tail contribu-
tions to lateral and directional stability. The latter, of course,
include not only the loads on the vertical tail but also the loads induced
by the vertical tail on the fuselage and other parts of the airplane.

As with the total tail contributions ACYB and ACnB, both CYtﬁ

and Cntﬁ decrease with angle of attack, especially at the higher speeds
(fig. 11). Both ACYB and z:an‘3 have larger absolute values than thB

and CntB, indicating that for low angles of attack about 30 percent of

the total tail contribution is from loed carried on the fuselage. These
total increments, however, decrease more rapidly with angle of attack than
the tail loads, so that at the higher angles the load carried on the
fuselage is of the order of 20 percent of the total tail contribution.

The value of ACZB is for all conditions less negative (or more .
positive) than CltB, figure 11. This is due to the fact that the load

on the vertical taill induces an asymmetric loading on the horizontal tail
such as to cause a significant rolling-moment contribution opposite in
sign to that produced by the vertical-tail loading. Similar results have
been shown in reference 8 which reports loading measurements made on a
tall-assembly—body configuration.

Both CztB and ACIB decrease more rapldly with angle of attack

than the other deri#atives, which is the direct result of the use of the
stability axes system.

The variations of measured tail load with Mach number (fig. 12) in
the speed range of the present tests are relatively small and generally
follow the trend of total tail contribution.

The center-of-pressure locations for the exposed vertical tall as
determined directly from vertical-tall moments and lateral forces are A
shown in figures 13(a) and (b). They show a generally rearward and
outward trend with both angle of attack (fig. 13(a)) and Mach number
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(fig. 13(b)). For all test conditions the center of pressure was located
between 0.45 and 0.52 by, and between 0.18 and 0.32 cy. The symbols

of figure 13(a) are actual test points, while those of figure 13(b) are
cross plotted from the curves of 13(a). In utilizing these data, it should
be kept in mind that they were obtained without seals at the tail root.
Leakage due to lack of seals may have unloaded the inboard sectlons of the
vertical tail with a resultant outboard movement of the center of pressure.

Effect of Leading-Edge Chord-Extensions on Lateral and
Directional Characteristics and on Tail loads

Tests with the longitudinal stability "fix" installed were made
through an angle-of-attack range at sideslip angles of 0° and 5°.
Results are shown in figure 14.

In earlier tests this fix was found to improve the longitudinal
characteristics, although not extensively (see ref. 4). Since the chord-
extension affects the longitudinal characteristics by preventing or
reducing the tip stall, it was anticipated that the effect on the rolling
moment in sideslip tests would be apprecisble. This was found to be the
case. The linear portion of the CZB curve with a 1s generally extended

and the upward breaks are less severe with the fixes installed, indicating
that the left and right wing lift curves are more consistent; that is,

the separation is better controlled and more gradual so that the erratic
breaks in the curve caused by abrupt stalling of one wing are reduced.

The effects of the fix on CnB and CYB were generally small. The

tail loads, as measured with the tail balance and shown on the right side
of figure 14 are also little affected by the addition of the fix, indi-
cating that the effect of the fix is confined to the wing, as would be
expected.

Pitching Moments in Sideslip

Figure 15(a) indicates that only a very small nose-down increment
in pitching-moment coefficient (less than 0.005) occurs with this model
at 5° sideslip at zero angle of attack. Tests to higher sideslip angles
with the vertical tail off (fig. 15(b)) show a more severe nose-down
tendency developing as the sideslip exceeds 10°. This tendency probably
would also occur with the vertical tail on, but this is not certain since
the presence of the vertical tail may appreciably alter conditions on
the horizontal tail and hence the pitching moment.
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 Figure 16 indicates that the variations with angle of attack for the
increment in pitching-moment coefficient due to 59 sideslip was rather

" nonlinear, especially above an angle of about 8°. Values as large as

0.015 were measured compared to less than 0.005 at zero angle of attack.
CONCLUSIONS

A transonic wind-tunnel investigation has been made on a model of
a swept-wing fighter-type airplane to determine airplane characteristics
and vertical-tall loads in sideslip. Although the vertical-tail-fuselage
juncture was not sealed for most of the tests (thus introducing some
quantitative errors), the following conclusions are indicated:

1. At zero angle of attack where variable sideslip tests were made,
CnB was 15 to 20 percent less for Mach numbers of 0.80 to 0 95 for

the very small sideslip angles ($0.5°) compared with that obtained at
sideslip angles of 15°.

2. At a Mach number of 0.80 the stability derivative CnB for the

complete airplane was approximately constant through the angle-of-attack
range. At higher speeds, although having & greater initial value, CnB

decreased with engle of attack (but did not fall below the M = 0.80 level
in the range of these tests). This was associated with corresponding
reductions with angle of attack of both the total vertical-tail contri-
bution and the load on the exposed part of the vertical tail.

3. The loads on the exposed vertical tail represented between 60
and 80 percent of the total tail contribution to side force, being
greatest at the highest angle of attack where the carryover to the
fuselage was reduced.

4, The center of pressure of the exposed vertical tail moved upward
and rearward with both angle of attack and Mach number. Maximum movement
was approximately 7 percent of the height and 14 percent of the local
chord.

5. The use of a wing pitching-moment fix of the drooped chord-
extension type extended the linear portion of the Clp curve to higher

angles of attack and reduced the severity of the positive breaks.
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6. The pitching-moment-coefficient increment for s sideslip angle
of 5° was less than -0.005 for zero angle of attack, but was as much as
=0.015 for higher angles of attack.

Langley Aeronautical laboratory,
National Advisory Committee for Aercnautics,
langley Field, Va., November 30, 1955.
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Loteral force

Pitching
moment

Rolling moment

Mean oerodynamic chord, €

Rolling moment

Figure 1l.- Sketch of the wind-tunnel model showing the center-of-gravity
location and stability-axes system used in reducing data for this

report. The positive direction of forces, moments, and angles is
indicated by the arrows.
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c.g

Vertical tail Wing

Sweep at the quarter chord, deg........ 45 Sweep at the quarter chord, deg ... 45

Aspectratio ....... 000 nune Ceessenns 1.49 Aspectratio.............000ve.. 356

Taperratio......coocvivneneecnne eeese 030 Taper ratio.......cvo0vienaen ... 0.30

Section....... Cetrereerrenenas NACA 64A007 Section ................ NACA 64A007

Area (exposed part less dorsal), sq ft .. 0.895 Span, in. ,.....ciiiiiiiiiiiiiiaen 65.84

Dorsal area, sqft .............. eee.. 0.083 Mean aerodynamic chord, in. ..... 20.39
Area, sqft ............. Ceestees 8.46

Horizontal tail

Sweep at the quarter chord, deg ....... 45
Aspectratio ........c.0vevuiennn .. 3,56
Taper ratio.....ccvvievescrnsnsacssss 030
Section ......... seeeseeen «+.. NACA 64A007
8pan, In. ...cvvevvverararnsncancnsees 33.80

Area, 8qQft ......covveviinrccnncanees 2,23

Figure 2,- Vertical-tail and other model dimensions.
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/-v.rﬁcol tail

|, ~Bolance

DR

S\

/-Bolonce gage beom

[—Foirinq block

Fuselage

Figure 4.- Typical cross section through instrumented vertical tail.
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16 71 1 1T 1T T T T T T 1
Plain symbols——Piain vertical tail (sealed)
Flogged symbols —Instrumented vertical tail (unsealed)
12 '
08
N
\A
¥ \\
04 S
N \f\
M N
.03 b O ! S
p >
N
N X
3 1.00a 0 =5 \
13 j \ R
Q AN 0
§ \E\\li oA ~ §
5 950 0 ~¥ - <
§ \ &’\ \\\N;
8 \ ™3: BN
£ oon ol B Pl | %
a, R . YT ] —'\\
u.g) RS : \ R | L\\\
800 o ‘@1 -
5
| \%
PR ¢
NI
N
\'\
-08 -
1% 2 0 2 4 6 8

Sideslip angle , @, deg

(a) Side force.

Figure 5.- Tall-on variation of lateral airplane coefficlients with side-
slip at o = 0°,
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Or—T—71—T1T T T T 1
| Plain symbols Plain vertical tail JS
(sealed) /
oi2} Flagged symbols— Instrumented vertical L
' tail (unsealed) ,/
/s
008
004
M
cI.O3B 0
$)
g
'S 1004 O
®
(o)
(&)
« 950 0
3]
E p
]
3 90O O J
& 7 .
g ] /4
> / {
800 C L.\ /7 A /% "
//
/ // N
§ VS w
-004 >
7
/4 )JZ:/\
7 {
& //
/s
R
R 2 0 2 4 6 8

Sideslip angle, 8, deg

(b) Yawing moment.

Figure 5.- Continued.
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Rolling-moment coefficient, Cq
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016 T 1 T T T 1T T T T 1
Plain symbols —Plain vertical tail (sealed)
Flogged symbols—Instrumented vertical tail (unsecled)
012
008
004
M P~
L
103> O >\£
- N
4 “‘L\Emk—
1004 O s .
%
_E< A
95¢ 0 ——t-=3
9o O S ag
al [
‘ f\.“__\_& I
800 O A K
3 =B-4-
‘\( ~
-004
-008
g =2 ) 2 a 6
Sideslip angle, 3, deg
(c) Rolling moment.
Figure 5.- Concluded.
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Figure 6.- Effect of unsealed vertical~-tail root on the airplane sideslip
derivatives. a = 0°,
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Figure T7.- Continued.
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Figure 8.- Variation of lateral forces and moments with sideslip at a = o°

on the instrumented vertical tail (unsesled).
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Figure 8.- Continued.
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Figure 8.- Concluded.
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Figure 12.- Variation with Mach number of unsealed-vertical-tsil contri-
bution to the sideslip derivatives.
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Basic wing
—~—— Wing with 6" leading~edge droop, 0.25-0.71 b/2;
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M Airplone derivotives M Toli-ood derivatives
0.80 0 0.80 Y y
80 o 90
s o 95 M
100 0 100 I s v e s
103 0 103 OF= ———90
vy T LT
Cvg -2 0805 oy, s ==
BEER 8 S et e 1,00
. ?_04 ) - —~4==1 1,03
— 95
et - | 6
-8 g g 1.007] -8
/, 1.03.]
-8 = -8
-1 -1.0
2 " 2 TN
0.80 =
| frmar—eny —-"“": = =g =
== = — P _— 95
Cra = ol A Y l 4
M =%=2 95 M | —
0.80 L5/ ey N 0.80 Ol ~ 03
90 o _ 90 ==
~=~F-~ |.00
% o 1034 9
1.00 o/ 1.00 0
1.03 o) 103
ol [ T
+ M
M M M 080
080 G\ 0.80 7 0.80 e
S0 c\\\\ < 920 — 901
alk. [~ | o |
95 o) 95 95
\\‘\ g "\\_/k 4'\\ .
Gg 100 © i 4>t Cn, 100
(] > \\. N 93\ | |
103 ORI - 103 1.001
I~ ‘\Sp\/“‘l\d ] p— 1,03
‘ \w.\ Q: :\‘ 'i”//
. 3 _1 -
N 100_
\
N | 103
2 « 8 1z 6 i i i6

Angie of attack, a, deg

Figure 1l4,- Effect of leading-edge fix on lateral airplane and tail-load
derivatives,
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Plain symbols——Plain vertical tail (sealed)
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Figure 15.- Variation of pitching-moment coefficient with sideslip at
zero angle of attack.
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Figure 16.-~ Effect of a sideslip angle of 5° on the pitching-moment
coefficient. Unsealed vertical tail on and off.
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